OdinMP/CCp

An implementation of the OpenMP standard for the C programming language

Christian Brunschen and Mats Brorsson, Department of Information Technology, Lund University

The goal of this project has been to write a compiler which implements the OpenMP specification for C, and generates C code using POSIX threads (a.k.a. pthreads) to implement the parallelism.

We first approached the problem by attempting to develop a mechanical way to manually translate an OpenMP program into an equivalent program using pthreads. In this process, we had to solve a number of conceptual problems – pthreads offer a granularity of parallelism at the level of one function, which is quite radically different from what OpenMP offers. Likewise, we had to investigate, understand and solve such problems as thread initialization, how to implement threadprivate variables, or how to handle the fact that source code can come in more than one file. Also, while the main focus was to investigate the viability of doing this at all, we could not entirely lose sight of performance issues, both regarding memory use and overhead introduced into the code by the translation.

Though performed manually, the resulting scheme for translating was quite mechanic and suitable for implementation in software. Our next task, thus, was to write a compiler for C with OpenMP, which would generate much the same code as we had generated manually. This compiler should also be reasonably portable, and still generate code which would run with reasonable performance.

To write the compiler itself, we needed a good set of supporting tools. After a cursory and by no means exhaustive search, we chose to perform the development of the compiler in the Java programming language, with the help of two compiler-writing tools, Java Tree Builder and Java Compiler Compiler.

The result so far is a working compiler called OdinMP/CCp, which implements almost all of the OpenMP specification. It generates code that offers quite reasonable performance, and it has the advantages that is can be used on for platform that offers support for POSIX threads.

Performance measurements on the generated code, performed on a Sun Enterprise 10000, have shown a measured speedup of 7.2 for the molecular dynamics program ‘md’ with a dataset of 2048 particles, when executed on 8 processors. The overhead in the generated code, when entering a parallel region, is on the order of 10 microseconds + 10 microseconds per thread + contention overhead generated in the underlying platform; cleanup overhead when leaving a parallel region is similar.

OdinMP/CCp is available with complete source code. It is also currently being used in another project, to convert the SPLASH program suite from ANL macros to OpenMP, in order to compare the two.

